Deep Learning Course Index
Complete Deep Learning roadmap — foundations, neural networks, CNNs, RNNs, LSTMs, GRUs, attention, transformers, and modern AI architectures. Perfect for ML engineers, researchers, and real-world applications.
I. Deep Learning Foundations (15 Lessons)
1. What is Deep Learning?
2. Biological vs Artificial Neurons
3. Neural Network Architecture
4. Activation Functions
5. Forward & Backpropagation
6. Loss Functions
7. Gradient Descent Variants
8. Weight Initialization
9. Bias & Variance
10. Overfitting & Underfitting
11. Regularization
12. Dropout
13. Batch Normalization
14. Optimization Algorithms
15. Training Pipeline
II. Neural Network Models (15 Lessons)
16. Perceptron
17. Multi-Layer Perceptron
18. Initialization Strategies
19. Hyperparameter Tuning
20. Epochs, Batches, LR
21. Early Stopping
22. Vanishing Gradients
23. Evaluation Metrics
24. Confusion Matrix
25. ROC & AUC
26. Keras Sequential API
27. PyTorch Basics
28. TensorFlow Fundamentals
29. Build NN from Scratch
30. Gradient Checking