Data Science
I. Data Science Foundations
II. Data Wrangling & Cleaning
5. Missing Values
6. Outliers
7. Transformations
8. Encoding
9. Feature Scaling
10. Merging & Joining
III. Exploratory Data Analysis (EDA)
11. Univariate Analysis
12. Bivariate Analysis
13. Multivariate Analysis
14. Summary Statistics
15. Real-World EDA
IV. Feature Engineering
V. Statistics & Probability
21. Descriptive Statistics
22. Probability Basics
23. Random Variables
24. Distributions
25. Hypothesis Testing
26. CI & p-Values
VI. Data Visualization
VII. SQL for Data Science
VIII. Databases & Storage
IX. Python Libraries
X. Machine Learning
XI. Data Pipelines & ETL
XII. Big Data Basics
XIII. Cloud for Data Science
XIV. Real-World Projects