Machine Learning Course Index
A complete end-to-end Machine Learning roadmap — covering ML foundations, math, algorithms, feature engineering, model training, tuning, real-world ML pipelines, deep learning fundamentals, and deployment.
I. Beginner Level (15 Lessons)
1. Introduction to Machine Learning
2. Types of Machine Learning
3. Machine Learning Workflow
4. Data Preprocessing
5. Feature Scaling
6. Data Cleaning
7. Data Visualization for ML
8. Statistics for ML
9. Linear Algebra (Basics)
10. Probability for ML
11. Overfitting & Underfitting
12. Train/Test Split
13. Cross-Validation
14. Bias–Variance Tradeoff
15. ML Evaluation Metrics
II. Intermediate Level (15 Lessons)
16. Linear Regression
17. Logistic Regression
18. Decision Trees
19. Random Forest
20. Gradient Boosting
21. XGBoost
22. Support Vector Machines
23. KNN Algorithm
24. Naive Bayes
25. Clustering (K-Means)
26. Hierarchical Clustering
27. Dimensionality Reduction
28. PCA (Principal Component Analysis)
29. Feature Selection
30. Feature Engineering
III. Advanced Level (15 Lessons)
31. Hyperparameter Tuning
32. Grid Search
33. Random Search
34. ML Pipelines
35. Model Deployment
36. Model Monitoring
37. Reinforcement Learning
38. Neural Networks (Basics)
39. Intro to Deep Learning
40. Regularization Techniques
41. Loss Functions
42. Optimizers
43. Transfer Learning
44. ML Case Studies
45. Mini ML Project