AI Course Index
Master Artificial Intelligence with 108 complete, structured lessons. Learn AI theory, neural networks, transformers, NLP, computer vision, LLM engineering and real-world deployment.
I. AI Foundations (Lessons 1β20)
1. Introduction to AI
2. History of AI
3. AI vs ML vs DL
4. Search Algorithms
5. Intelligent Agents
6. Informed & Uninformed Search
7. Constraint Satisfaction
8. Adversarial Search
9. Logic in AI
10. Planning in AI
11. Knowledge Representation
12. Probabilistic AI
13. Bayesian Networks
14. Markov Models
15. AI Ethics
16. AI Applications
17. Intro to PyTorch
18. Intro to TensorFlow
19. AI Workflows
20. Data for AI
II. Machine Learning Foundations (Lessons 21β40)
21. Introduction to Machine Learning
22. ML Workflow & Pipelines
23. Supervised Learning
24. Unsupervised Learning
25. Reinforcement Learning
26. Linear Regression
27. Logistic Regression
28. Support Vector Machines (SVM)
29. Decision Trees
30. Random Forest
31. Gradient Boosting
32. XGBoost Complete Guide
33. K-Means Clustering
34. Hierarchical Clustering
35. Dimensionality Reduction (PCA, LDA)
36. Feature Engineering for AI
37. Feature Selection Techniques
38. Model Evaluation Metrics
39. Overfitting & Underfitting
40. Cross-Validation Methods
III. Deep Learning & Neural Networks (Lessons 41β60)
41. Introduction to Deep Learning
42. Neural Network Basics
43. Activation Functions
44. Forward Pass & Backpropagation
45. Loss Functions & Optimizers
46. Regularization & Dropout
47. CNN Basics (Convolutional Nets)
48. Popular CNN Architectures (VGG, ResNet)
49. RNN, LSTM & GRU
50. Sequence-to-Sequence Models
51. Transformers β Introduction
52. Attention Mechanism Explained
53. Positional Encoding
54. Training Deep Networks Efficiently
55. Hyperparameter Tuning in DL
56. Transfer Learning & Fine-Tuning
57. Autoencoders & Applications
58. GAN Basics (Generative Adversarial Nets)
59. GAN Applications (Images, Media)
60. Serving Deep Learning Models in Production
IV. Natural Language Processing (Lessons 61β80)
61. Introduction to NLP
62. Text Processing & Normalization
63. Tokenization Techniques
64. Stopwords, Stemming & Lemmatization
65. Bag of Words (BoW) & TF-IDF
66. Word Embeddings (Word2Vec, GloVe)
67. Sentence Embeddings (SBERT)
68. NLP Classification Models
69. Sequence Modeling in NLP
70. RNN, LSTM & GRU in NLP
71. Transformers in NLP
72. BERT β Basics & Architecture
73. Fine-Tuning BERT
74. RoBERTa & DistilBERT
75. Sentiment Analysis
76. Named Entity Recognition (NER)
77. Machine Translation (NMT)
78. Text Generation Models
79. NLP Evaluation Metrics
80. NLP Use Cases & Applications
V. Computer Vision (Lessons 81β95)
81. Introduction to Computer Vision
82. Image Processing Basics
83. Filters & Edge Detection
84. Convolutions & Kernels
85. Object Detection (YOLO, SSD)
86. Object Tracking
87. Image Segmentation (U-Net)
88. Face Detection & Recognition
89. Feature Detection (SIFT, ORB)
90. OCR & Text Extraction
91. Image Augmentation Techniques
92. Generative Vision Models
93. Vision Transformers (ViT)
94. Multimodal Models
95. CV Use Cases & Applications
VI. LLM Engineering & Advanced AI (Lessons 96β108)
96. Introduction to LLMs
97. Tokenization for LLMs
98. LLM Architecture Explained
99. Pretraining LLMs
100. Finetuning LLMs
101. RLHF (Reinforcement Learning from Human Feedback)
102. Prompt Engineering (Advanced)
103. Embedding Models
104. Vector Databases (FAISS, Pinecone)
105. LLM Agents & Autonomous Systems
106. Guardrails, Safety & Alignment
107. AI Systems in Production
108. End-to-End AI Project